发表状态 | 已发表Published |
题名 | The meta-elliptical distributions with given marginals |
作者 | |
发表日期 | 2002 |
发表期刊 | Journal of Multivariate Analysis
![]() |
ISSN/eISSN | 0047-259X |
卷号 | 82期号:1页码:1-16 |
摘要 | Based on an analysis of copulas of elliptically contoured distributions, joint densities of continuous variables with given strictly increasing marginal distributions are constructed. A method utilized for this procedure is to embed the spherical distribution quantile transformation of each variable into an elliptically contoured distribution. The new class of distributions is then called meta-elliptical distributions. The corresponding analytic forms of the density, conditional distribution functions, and dependence properties are derived. This new class of distributions has the same Kendall's rank correlation coefficient as meta-Gaussian distributions. As an extension of elliptically contoured distributions, some new classes of distributions are also obtained. © 2002 Elsevier Science (USA). |
关键词 | Conditional quantile Copulas Elliptically contoured distributions Kendall's τ Likelihood ratio dependence Multivariate distribution Regression dependence |
DOI | 10.1006/jmva.2001.2017 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000177010400001 |
Scopus入藏号 | 2-s2.0-0036334962 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/2469 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Fang, Kaitai |
作者单位 | 1.Hong Kong Baptist University, Hong Kong, Hong Kong 2.George Washington University |
推荐引用方式 GB/T 7714 | Fang, Hongbin,Fang, Kaitai,Kotz, Samuel. The meta-elliptical distributions with given marginals[J]. Journal of Multivariate Analysis, 2002, 82(1): 1-16. |
APA | Fang, Hongbin, Fang, Kaitai, & Kotz, Samuel. (2002). The meta-elliptical distributions with given marginals. Journal of Multivariate Analysis, 82(1), 1-16. |
MLA | Fang, Hongbin,et al."The meta-elliptical distributions with given marginals". Journal of Multivariate Analysis 82.1(2002): 1-16. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论