科研成果详情

发表状态已发表Published
题名A novel FFT-based robust multivariable process identification method
作者
发表日期2001
发表期刊Industrial and Engineering Chemistry Research
ISSN/eISSN0888-5885
卷号40期号:11页码:2485-2494
摘要

In this paper, a general robust identification method is proposed for an interactive linear time-invariant multivariable process. Using the fast Fourier transform (FFT), the process frequency response matrix is first calculated from the recorded process input and output time responses. Then the process step response is constructed using the inverse FFT for each process channel. New linear regression equations are derived from such responses and their various-order integrals. The regression parameters are then estimated without iteration and give a first-order plus dead time model or a general second-order plus dead time model. The proposed method is applicable to various experimental scenarios. Its effectiveness is demonstrated through simulation examples and a real-time test.

DOI10.1021/ie9908175
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Engineering
WOS类目Engineering, Chemical
WOS记录号WOS:000168922100014
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/3911
专题个人在本单位外知识产出
通讯作者Wang, Qingguo
作者单位
Department of Electrical Engineering, National University of Singapore, Singapore 119260, Singapore
推荐引用方式
GB/T 7714
Wang, Qingguo,Zhang, Yong. A novel FFT-based robust multivariable process identification method[J]. Industrial and Engineering Chemistry Research, 2001, 40(11): 2485-2494.
APA Wang, Qingguo, & Zhang, Yong. (2001). A novel FFT-based robust multivariable process identification method. Industrial and Engineering Chemistry Research, 40(11), 2485-2494.
MLA Wang, Qingguo,et al."A novel FFT-based robust multivariable process identification method". Industrial and Engineering Chemistry Research 40.11(2001): 2485-2494.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Qingguo]的文章
[Zhang, Yong]的文章
百度学术
百度学术中相似的文章
[Wang, Qingguo]的文章
[Zhang, Yong]的文章
必应学术
必应学术中相似的文章
[Wang, Qingguo]的文章
[Zhang, Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。