科研成果详情

发表状态已发表Published
题名Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles
作者
发表日期2022
发表期刊Chinese Chemical Letters
ISSN/eISSN1001-8417
卷号33期号:12页码:5184-5188
摘要

Exposure to environmental cadmium increases the health risk of residents. Early urine metabolic detection using high-resolution mass spectrometry and machine learning algorithms would be advantageous to predict the adverse health effects. Here, we conducted machine learning approaches to screen potential biomarkers under cadmium exposure in 403 urine samples. In positive and negative ionization mode, 4207 and 3558 features were extracted, respectively. We compared seven machine learning algorithms and found that the extreme gradient boosting (XGBoost) and random forest (RF) classifiers showed better accuracy and predictive performance than others. Following 5-fold cross-validation, the value of area under curve (AUC) was both 0.93 for positive and negative ionization modes in XGBoost classifier. In the RF classifier, AUC were 0.80 and 0.84 for positive and negative ionization modes, respectively. We then identified a biomarker panel based on XGBoost and RF classifiers. The incorporation of machine learning models into urine analysis using high-resolution mass spectrometry could allow a convenient assessment of cadmium exposure.

关键词Cadmium exposure High-resolution mass spectrometry Human urine Machine learning Metabolic profiles
DOI10.1016/j.cclet.2022.03.020
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Chemistry
WOS类目Chemistry, Multidisciplinary
WOS记录号WOS:000852679000040
Scopus入藏号2-s2.0-85128564826
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/8921
专题理工科技学院
通讯作者Cai, Zongwei
作者单位
1.Food Science and Technology Program,Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,519087,China
2.State Key Laboratory of Environmental and Biological Analysis,Department of Chemistry,Hong Kong Baptist University,Hong Kong,Hong Kong
3.Department of Nutrition,Food Safety and Toxicology,West China School of Public Health,Sichuan University,Chengdu,610041,China
第一作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Zeng, Ting,Liang, Yanshan,Dai, Qingyuanet al. Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles[J]. Chinese Chemical Letters, 2022, 33(12): 5184-5188.
APA Zeng, Ting., Liang, Yanshan., Dai, Qingyuan., Tian, Jinglin., Chen, Jinyao., .. & Cai, Zongwei. (2022). Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles. Chinese Chemical Letters, 33(12), 5184-5188.
MLA Zeng, Ting,et al."Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles". Chinese Chemical Letters 33.12(2022): 5184-5188.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zeng, Ting]的文章
[Liang, Yanshan]的文章
[Dai, Qingyuan]的文章
百度学术
百度学术中相似的文章
[Zeng, Ting]的文章
[Liang, Yanshan]的文章
[Dai, Qingyuan]的文章
必应学术
必应学术中相似的文章
[Zeng, Ting]的文章
[Liang, Yanshan]的文章
[Dai, Qingyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。