科研成果详情

发表状态已发表Published
题名Relation construction for aspect-level sentiment classification
作者
发表日期2022-03-01
发表期刊Information Sciences
ISSN/eISSN0020-0255
卷号586页码:209-223
摘要

Aspect-level sentiment classification aims to obtain fine-grained sentiment polarities of different aspects in one sentence. Most existing approaches handle the classification by acquiring the importance of context words towards each given aspect individually, and ignore the benefits brought by aspect relations. Since the sentiment of one aspect can be deduced through their relationship according to other aspects, in this paper, we propose a novel relation construction multi-task learning network (RMN), which is the first attempt to extract aspect relations as an auxiliary classification task. RMN generates aspect representations through graph convolution networks with a semantic dependency graph and utilizes the bi-attention mechanism to capture the relevance between the aspect and the context. Unlike conventional multi-task learning methods that need extra datasets, we construct an auxiliary relation-level classification task that extracts aspect relations from the original dataset with shared parameters. Extensive experiments on five public datasets from SemEval 14, 15, 16 and MAMS show that our RMN improves about 0.09% to 0.8% on accuracy and about 0.04% to 1.19% on F1 score, compared to several comparative baselines.

关键词Aspect relations Aspect-level Graph convolutional network Sentiment analysis
DOI10.1016/j.ins.2021.11.081
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000794186300012
Scopus入藏号2-s2.0-85120964385
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9370
专题理工科技学院
通讯作者Zhou, Jiantao
作者单位
1.State Key Laboratory of Internet of Things for Smart City, Department of Computer and Information Science, University of Macau, China
2.School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
3.BNU-UIC Joint AI Research Institute, Beijing Normal University, Guangdong, China
推荐引用方式
GB/T 7714
Zeng, Jiandian,Liu, Tianyi,Jia, Weijiaet al. Relation construction for aspect-level sentiment classification[J]. Information Sciences, 2022, 586: 209-223.
APA Zeng, Jiandian, Liu, Tianyi, Jia, Weijia, & Zhou, Jiantao. (2022). Relation construction for aspect-level sentiment classification. Information Sciences, 586, 209-223.
MLA Zeng, Jiandian,et al."Relation construction for aspect-level sentiment classification". Information Sciences 586(2022): 209-223.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zeng, Jiandian]的文章
[Liu, Tianyi]的文章
[Jia, Weijia]的文章
百度学术
百度学术中相似的文章
[Zeng, Jiandian]的文章
[Liu, Tianyi]的文章
[Jia, Weijia]的文章
必应学术
必应学术中相似的文章
[Zeng, Jiandian]的文章
[Liu, Tianyi]的文章
[Jia, Weijia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。