×
验证码:
换一张
忘记密码?
记住我
×
登录
中文
|
English
学校主页
|
图书馆
登录
注册
首页
学术成果
学院
学者
数据分析
检索
ALL
ORCID
题名
作者
发表日期
关键词
文献类型
原始文献类型
收录类别
出版者
状态
学院
理工科技学院
4
个人在本单位外知识产出
7
作者
范文涛
4
王田
1
屈冰清
1
文献类型
期刊论文
7
会议论文
2
发表日期
2025
1
2023
1
2021
2
2020
1
2019
1
2017
3
更多...
语种
英语English
9
收录类别
SCIE
5
CPCI-S
1
资助机构
关键词
Supervoxels
3
Video segmentation
3
video segmentation
3
Clustering
2
Computing methodologies∼Ima...
1
Dirichlet process
1
更多...
出处
ACM International Conferenc...
1
Computer Graphics Forum
1
ICASSP, IEEE International ...
1
IEEE Transactions on Image ...
1
IEEE Transactions on Intell...
1
IEEE Transactions on Neural...
1
更多...
资助项目
×
知识图谱
反馈留言
浏览/检索结果:共9条,第1-9条
已选(
0
)
清除
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
期刊影响因子升序
期刊影响因子降序
提交时间升序
提交时间降序
WOS被引频次升序
WOS被引频次降序
发表日期升序
发表日期降序
题名升序
题名降序
作者升序
作者降序
Adaptive video supervoxel segmentation via energy-guided bottom-up clustering
期刊论文
Signal, Image and Video Processing,2025, 卷号: 19, 期号: 3
作者:
Dong, Xiao
;
Zhong, Zhijie
;
Fan, Wentao
;
Chen, Zhonggui
;
Guo, Xiaohu
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2025/03/10
Clustering
Octree
Supervoxels
Video segmentation
SVNet: Supervoxel Network for Video Oversegmentation
会议论文
ACM International Conference Proceeding Series
作者:
Qi,Yijie
;
Yang,Baorong
;
Zhang,Wenjing
;
Dong,Xiao
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2024/06/13
Clustering
Spatio-temporal learning
Supervoxels
Video segmentation
An Intelligent Video Analysis Method for Abnormal Event Detection in Intelligent Transportation Systems
期刊论文
IEEE Transactions on Intelligent Transportation Systems,2021, 卷号: 22, 期号: 7, 页码: 4487-4495
作者:
Wan, Shaohua
;
Xu, Xiaolong
;
Wang, Tian
;
Gu, Zonghua
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2021/12/02
Intelligent transportation systems
long video event retrieval
question-answering
segment of interest
superframe segmentation
GPU-Based Supervoxel Generation with a Novel Anisotropic Metric
期刊论文
IEEE Transactions on Image Processing,2021, 卷号: 30, 页码: 8847-8860
作者:
Dong,Xiao
;
Chen,Zhonggui
;
Liu,Yong Jin
;
Yao,Junfeng
;
Guo,Xiaohu
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2025/08/28
anisotropic metric
GPU
jump flooding algorithm
Supervoxels
video segmentation
Unsupervised Video Object Segmentation Based on Mixture Models and Saliency Detection
期刊论文
Neural Processing Letters,2020, 卷号: 51, 期号: 1, 页码: 657-674
作者:
Lin, Guofeng
;
Fan, Wentao
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2025/07/15
Gaussian mixture model
Markov random field
saliency detection
Video object segmentation
Superpixel Generation by Agglomerative Clustering With Quadratic Error Minimization
期刊论文
Computer Graphics Forum,2019, 卷号: 38, 期号: 1, 页码: 405-416
作者:
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2025/08/28
Computing methodologies∼Image processing
image and video processing
image segmentation
Content-based unsupervised segmentation of recurrent TV programs using grammatical inference
期刊论文
Multimedia Tools and Applications,2017, 卷号: 76, 期号: 21, 页码: 22569-22597
作者:
Qu, Bingqing
;
Vallet, Félicien
;
Carrive, Jean
;
Gravier, Guillaume
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2022/05/17
Experimental evaluations
Grammatical inference
Hierarchical clustering
Multimedia mining
Multiple sequence alignment
Practical applications
Uniform resampling
Video segmentation
Online Learning of Hierarchical Pitman-Yor Process Mixture of Generalized Dirichlet Distributions with Feature Selection
期刊论文
IEEE Transactions on Neural Networks and Learning Systems,2017, 卷号: 28, 期号: 9, 页码: 2048-2061
作者:
Fan, Wentao
;
Sallay, Hassen
;
Bouguila, Nizar
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2025/07/16
Generalized Dirichlet (GD)
hierarchical Pitman-Yor process
mixture models
nonparametric Bayesian
scene recognition
variational inference
video segmentation
A hierarchical Dirichlet process mixture of GID Distributions with feature selection for spatio-temporal video modeling and segmentation
会议论文
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, New Orleans, LA, MAR 05-09, 2017
作者:
Fan, Wentao
;
Bouguila, Nizar
;
Liu, Xin
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2025/07/23
Dirichlet process
feature selection
Mixture models
variational learning
video segmentation